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a b s t r a c t

Motivated by an industrial application, we consider a recently introduced multi-period facility location
problem with multiple commodities and multiple capacity levels. The problem allows for the relocation
of facilities, as well as for the temporary closing of parts of the facilities, while other parts remain open. In
addition, it uses particular capacity constraints that involve integer rounding of the allocated demands. In
this paper, we propose a strong formulation for the problem, as well as a hybrid heuristic that first
applies Lagrangian relaxation and then constructs a restricted mixed-integer programming model based
on the previously obtained Lagrangian solutions. Computational results for large-scale instances
emphasize the usefulness of the heuristic in practice. While general-purpose mixed-integer program-
ming solvers do not find feasible solutions for about half of the instances, the heuristic consistently
provides high-quality solutions in short computing times, as well as tight bounds on their optimality.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Classical facility location aims at striking a balance between
facility construction costs and transportation costs to satisfy cus-
tomer demands. Operations research practitioners therefore con-
tributed with a considerable variety of extensions to classical
models to represent real world applications in a more realistic
manner, involving the location of hospitals [31], telecommunica-
tion hubs [8], schools [1], manufacturing and distributing systems
[27], and many others. The dynamic adjustment of the capacities
over a planning horizon has often been a central issue. Problem
extensions have been proposed to allow for the expansion and the
reduction of capacity along time [23,1], temporary facility closing
[8,10] and the relocation of capacities from one location to another
[25]. Other important extensions acknowledged uncertainty in the
customer demands [28] or the production capacities themselves
(for references, see, e.g., [30]). Given the difficulty to solve those
problems for real world sized instances, many solution algorithms
have been suggested. Exact methods have been proposed for
classical variants [35,15], whereas heuristics have proved to be
effective for more complex problem variants. Due to the compli-
cated structure of the latter, only a few works have applied
methods that provide a bound on the solution quality, such as
Benders decomposition and Lagrangian relaxation [10,20]. More
complex problem variants have therefore been solved by methods
such as sophisticated local search [22,26], which, by themselves,
do not allow for an assessment of the solution quality.

In this paper, we consider a multi-period facility location pro-
blem with multiple commodities and multiple capacity levels that
has recently been introduced and applied in the forestry sector by
Jena et al. [17]. In the application considered by the authors, a
logging company must locate camps to host its workers. The
problem involves several different ways to adjust capacity, namely,
the expansion of capacity, the temporary closing of parts of the
facility and the relocation of facilities from one location to another.
Many of these features have already been discussed in early lit-
erature. The first multi-period models include those by Ballou [2]
and Wesolowsky [36]. Multiple commodities have been con-
sidered by authors such as Geoffrin [14] and Warszawski [34].
Modular capacity levels have often been treated by offering a
choice of facility size [21,29,9,16], whereas capacity expansion has
been discussed in detail by Luss [23] and has been found to be a
crucial feature in many applications [1,7,25]. Wesolowsky and
Truscott [37] have been among the first to consider simple relo-
cation of facilities, followed by several others [27,6,25]. While the
temporary closing of entire facilities has been modeled in several
studies [33,8,7,10], the problem introduced by Jena et al. [17] was
the first to consider the partial closing and reopening of facilities
along time. The authors propose a flow based formulation that
uses a network structure for each facility location to manage the
amount of available capacity and the amount of temporarily closed
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capacity of the facility. An integer flow, representing the number of
open and closed capacity levels, allows for the closing of open
capacity and the reopening of closed capacity. Another feature of
the problem is the use of the so-called round-up capacity (RUC)
constraints, which imply integer rounding of the total demand for
each commodity allocated to the same facility. While this char-
acteristic may correspond to the practice in many industries, to the
best of our knowledge, the authors were the first to explicitly
model this type of capacity constraints. Modeling the problem's
features in detail results in complex models that raise questions of
tractability. The problems solved by Jena et al. [17] were therefore
of rather small size.

Contributions: In this paper, the above problem, subsequently
referred to as the Dynamic Facility Location Problem with Relocation
and Partial Facility Closing (DFLP_RPC) with RUC constraints, is
revisited. A new formulation and a heuristic solution method are
proposed to solve instances that are approximately 20 times larger
in terms of facility locations and customers. We summarize our
contributions as follows. First, a new mixed-integer programming
(MIP) formulation for the DFLP_RPC with RUC constraints is
introduced, based on the modeling technique proposed by Jena
et al. [18]. While the latter considers rather simple variants of
dynamic facility location problems, the formulation presented
here accounts for additional features, namely the partial closing
and reopening of facilities, the relocation of facilities and the
round-up capacity (RUC) constraints. The new formulation has
several advantages when compared to the formulation proposed
by Jena et al. [17]. It yields integrality gaps that are, on average,
more than 29 times smaller. Furthermore, it enables a state-of-the-
art MIP solver to find feasible solutions for significantly more
instances and to achieve a higher solution quality. The new for-
mulation also allows for a more detailed representation of the cost
structure. Second, we propose a Lagrangian based heuristic, cap-
able to address large scale instances of the DFLP_RPC with RUC
constraints. The heuristic consists of two optimization stages. In
the first stage, Lagrangian relaxation is applied to provide lower
and upper bounds for the problem. Then, a restricted MIP model,
based on the Lagrangian solutions, is solved to improve the final
solution quality. The heuristic substantially extends those pro-
posed by Jena et al. [19] and accounts for the additional problem
features, i.e., the partial closing and reopening of facilities, the
relocation of facilities, and the RUC constraints. The technical
challenges induced by these new features impact the algorithm on
all levels: the set of relaxed constraints, the dynamic programming
algorithm to solve the Lagrangian subproblems, the generation of
primal feasible solutions, and the feeding strategy for the restric-
ted MIP. Computational results have shown that the combination
of the new formulation and the Lagrangian heuristic is quite
powerful. The proposed heuristics are capable of finding high
quality solutions in short computing times, even for large-scale
instances for which a state-of-the-art MIP solver does not find
feasible solutions. Furthermore, due to the strength of the pro-
posed formulation, the heuristics provide significant bounds on
the quality of the obtained solutions.

Outline: The remainder of the paper is organized as follows.
Section 2 defines the problem and its application in forestry. Then,
Section 3 introduces the new formulation for the DFLP_RPC with
RUC constraints. The two-stage Lagrangian heuristic is presented
in Section 4. Computational experiments for the problem, as well
as for simplified problem variants without relocation and without
RUC constraints, are presented in Section 5: the linear program-
ming (LP) relaxation and the integrality gaps of the problems are
analyzed; furthermore, the quality of the solutions for the indus-
trial problem provided by a general-purpose MIP solver and the
proposed heuristics are compared. Finally, conclusions are drawn
in Section 6.
2. Problem description

We consider the problem introduced by Jena et al. [17], which
extends the Capacitated Facility Location Problem in several aspects:
multiple time periods, multiple (modular) capacity levels and multiple
commodity types. Given a set of customers with independent
demands for each commodity and time period, the objective is to find
the optimal locations and opening schedules for facilities that provide
sufficient capacity to satisfy the customer demands at minimal costs.
New facilities may be constructed and existing facilities may expand
their capacity at any time period. Since a facility may not always
require its entire capacity, parts of the facility may be temporarily
closed, while other parts remain open.

Given that the temporary closing and reopening of capacity is
usually much cheaper than the complete shut-down and con-
struction of a facility, this feature may result in a very dynamic
opening schedule of the facilities. Throughout this paper, we will
denote the capacity that is available for use as the open capacity. In
contrast, we denote the capacity that is temporarily not available
as the closed capacity. Closed capacity can be reopened at a later
moment. Finally, the existing capacity is defined as the sum of the
open and the closed capacity. Facilities may be relocated from one
location to another, assuming: (1) a facility can only be relocated
as a whole, not partially; (2) before it is relocated, the entire
capacity of a facility has to be closed; (3) facilities cannot be
merged at the same location.

In contrast to classical facility location models, the problem
considered here involves particular capacity constraints, the above
mentioned round-up capacity (RUC) constraints. These constraints
require that, even though facilities may be able to provide the
exact level of capacity required, they need to reserve production
capacity in multiples of a certain size. This involves rounding the
demands for each commodity according to the lot sizes to com-
pute the total capacity necessary at the facility. The following
example illustrates these constraints. In a given time period, a set
of customers have been allocated to obtain a total of 287 units of
commodity A and 113 units of commodity B from a certain facility.
Let us assume that this facility needs to reserve blocks of size 100
for the production of commodity A and blocks of size 150 for the
production of a commodity B. Even though the facility may pro-
duce the exact amount required by the customers, it needs to
ensure a total capacity of 300 units, i.e., three blocks, for com-
modity A and 150 units, i.e., one block, for commodity B.

Application in industry: The DFLP_RPC with RUC constraints was
motivated by an industrial application in the forestry sector
introduced by Jena et al. [17], where a logging company needs to
locate camps to host its workers. Facilities represent logging
camps, while customers represent logging regions that specify a
total demand for two different commodities: the workforce for
wood logging and the workforce for the construction and main-
tenance of access roads. Demands are specified over a time hor-
izon of five years, each year divided into a summer and a winter
season. Logging camps are composed by trailers and therefore
have a very flexible structure. The capacity level of a facility thus
represents the number of trailers at the camp. The hosting capa-
city of a logging camp can easily be expanded by adding new
trailers. Some trailers may be closed, while others remain open.
Trailers are only available for use when they are open. The total
number of trailers of a camp, i.e., the sum of open and closed
trailers, is also referred to as the number of existing trailers.
Demands are specified as the average number of crews working
throughout the entire season. It is likely that a crew will only work
a part of the season in a given region, which leads to a fractional
demand. Given that crews always work together, the logging camp
must ensure sufficient hosting capacity for the entire crew. The
RUC constraints therefore ensure that capacity is modeled in a
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realistic manner. As an example, let us assume that one crew will
work the entire season, while another one will work only 40% of
the season at a given site. The total demand for the two crews is
thus 1.4 and a logging camp would need to ensure a total capacity
for at least ⌈1:4⌉¼ 2 crews in order to host the workers of both
crews in the same time period.

Even though the two new features introduced in the problem
considered here, namely the partial temporary closing and the
RUC constraints, have been motivated by an application in forestry,
they also apply to different contexts. For example, a company may
have the possibility to temporarily close parts of warehouses,
production facilities or stores, according to seasonal demand. Here,
the cost of acquisition and sale (i.e., shut-down) of such capacity is
different from the costs of temporary closing and reopening. Fur-
thermore, production facilities often produce items in lots of a
certain size. However, previous models may have simplified such
details either to avoid the additional modeling complexity or due
to the strategic nature of the corresponding problem.
3. Mathematical formulations

In this section, we propose a new formulation based on a
modeling technique that has shown to yield very strong LP
relaxation bounds. We first review the input data used to model
the problem. We denote by J the set of potential facility locations
and by L¼ 0;1;2;…; q

� �
the set of possible capacity levels for each

facility. We also denote by I the set of customer demand points and
by T ¼ 1;2;…; t

� �
the set of time periods in the planning horizon.

We assume throughout that the beginning of period tþ1 corre-
sponds to the end of period t. The set of different commodities is
denoted by P. The demand of customer i for commodity pAP in
period t is denoted by ditp . The cost to serve one unit of commodity
p to customer i from facility j open at capacity level ℓ during
period t is denoted by gijtℓp. We denote by sp the block size (in
commodity units) that has to be reserved at a facility to provide
commodity type p. A facility may temporarily close parts of its
capacity. The capacity of a facility with ℓ open capacity levels at
location j is given by uj

ℓ (with uj
0 ¼ 0). Furthermore, we let J0D J be

the set of locations that already possess existing facilities at the
beginning of the planning horizon and n̂j be the capacity level (i.e.,
the total capacity) of the facility initially existing at location jA J0.
The costs to construct a facility of size nAL (i.e., a new facility with
n capacity levels) or to expand the capacity of an existing facility
by n capacity levels at location jA J is denoted by cCjn. Newly con-
structed capacity is assumed to be open, i.e., ready for use, after
construction. New capacity therefore affects the levels of the
existing and open capacity. The costs to reopen and close ℓ
capacity levels of the same facility are given by cTOℓ and cTCℓ ,
respectively. The maintenance costs for ℓ open capacity levels at a
facility during period t is given by cMℓ . Finally, c

R
n represents the

costs for relocating a facility with n closed capacity levels.
We now present a new formulation for the DFLP_RPC with RUC

constraints, inspired by the work of Jena et al. [18] on a simpler
dynamic facility location problem with capacity adjustment,
where it was shown that using binary variables with indices that
represent explicit capacity changes from level ℓ1 to ℓ2 results in
significantly stronger formulations. In the DFLP_RPC, one needs to
simultaneously manage capacity on two levels: the existing
capacity and the open capacity. We therefore extend this modeling
technique and use binary variables yjtℓ1ℓ2n1n2

that take value 1 if a
facility at location j changes its existing capacity from level n1 to n2
and its open capacity from level ℓ1 to ℓ2 at the beginning of time
period t. Clearly, variables are defined only for ℓ1rn1 and ℓ2rn2.

Furthermore, we assume that n1rn2, since facilities may only
expand their capacity, but not remove existing capacity. Integer
variables zjtℓpAZþ
0 represent the total number of blocks of com-

modity type p reserved at a facility with ℓ open capacity levels,
located at jA J at time period t. Binary variables ŵjt

ℓn indicate
whether a facility of size n (i.e., a facility with n existing capacity
levels), open at capacity level ℓ, is closed and relocated from
location j to another location at the beginning of period t. Binary
variables �wjt

n indicate whether a facility of size n is relocated to
location j at the beginning of period t. The continuous variables
xijtℓpA ½0;1� denote the fraction of the demand ditp satisfied by a
facility at location j open at capacity level ℓ.

The objective function coefficients associated to the capacity
change decisions y jt

ℓ1ℓ2n1n2
are given by f jtℓ1ℓ2n1n2

and describe the
aggregated costs to change the open capacity of a facility at loca-
tion j from level ℓ1 to ℓ2 and the existing capacity from level n1 to
n2 at the beginning of period t, as well as the costs to operate the
facility at levels ℓ2 and n2 throughout time period t. This cost
structure is more general than the one of the flow formulation
used by Jena et al. [17] and could therefore represent the capacity
transitions in a more realistic manner. However, to obtain a for-
mulation equivalent to that of Jena et al. [17], we set the cost
matrix f jtℓ1ℓ2n1n2

as follows.
The number of capacity levels constructed (nFC), the number of

capacity levels reopened (nRE) and the number of capacity levels
closed (nCL) that are represented by a decision variable y jt

ℓ1ℓ2n1n2

can be computed by

nFC ¼ n2�n1

nRE¼max 0; ðℓ2�ℓ1Þ�nFC
� �

nCL¼max 0; ðℓ1�ℓ2ÞþnFC
� �

:

The cost coefficients are then defined as

f jtℓ1ℓ2n1n2
¼ cMℓ2

þcCjðnFCÞ þcTOðnREÞ þcTCðnCLÞ:

We define the GMC based formulation for the DFLP_RPC with
RUC constraints (RPCr-GMC) as follows:

min
X
jA J

X
ℓ1 A L

X
ℓ2 AL

X
n1 A L

X
n2 AL

X
tAT

f jtℓ1ℓ2n1n2
yjtℓ1ℓ2n1n2

þ
X
iA I

X
jA J

X
ℓA L

X
pAP

X
tAT

gijtℓpd
it
p x

ijt
ℓpþ

X
jA J

X
ℓAL

X
nA L

X
tAT

cTCℓ þcRn
2

� �
ŵjt

ℓn

þ
X
jA J

X
nA L

X
tAT

cRn
2

�wjt
n ð1Þ

s:t:
X
jA J

X
ℓAL

xijtℓp ¼ 1 8 iA I; 8pAP; 8 tAT ð2Þ

X
iA I

ditp x
ijt
ℓprspz

jt
ℓp 8 jA J; 8ℓAL; 8pAP; 8 tAT ð3Þ

X
pAP

spz
jt
ℓpr

X
ℓ1 A L

X
n1 A L

X
n2 A L

uj
ℓy

jt
ℓ1ℓn1n2 8 jA J; 8ℓAL; 8 tAT ð4Þ

X
ℓ1 AL

X
n1 A L

yjðt�1Þ
ℓ1ℓn1n

¼
X
ℓ2 A L

X
n2 A L

yjtℓℓ2nn2 þŵjt
ℓn

8 jA J; 8nAL⧹f0g; 8ℓ¼ 1;…;n; 8 tAT⧹f1g ð5Þ
X
ℓ1 AL

X
n1 A L

yjðt�1Þ
ℓ10n1n

þ �wjt
n ¼

X
ℓ2 AL

X
n2 A L

yjt0ℓ2nn2 þŵjt
0n

8 jA J; 8nAL⧹f0g; 8 tAT⧹f1g ð6Þ
X
ℓ2 AL

X
n2 A L

yn̂jℓ2ðn1 ¼ n̂jÞn2
j1 ¼ 1 8 jA J0 ð7Þ

X
ℓ1 AL

X
ℓ2 A L

X
n1 A L

X
n2 A L

yjtℓ1ℓ2n1n2
r1 8 jA J; 8 tAT ð8Þ
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X
jA J

X
ℓA L

ŵjt
ℓn ¼

X
jA J

�wjt
n 8nAL; 8 tAT ð9Þ

xijtℓpARþ
0 8 iA I; 8 jA J; 8ℓAL; 8pAP; 8 tAT ð10Þ

yjtℓ1ℓ2n1n2
Af0;1g 8 iA I; 8 jA J; 8n1AL; 8n2 ¼ n1;…; q;

8ℓ1 ¼ 0;…;n1; 8ℓ2 ¼ 0;…;n2; 8 tAT ð11Þ

ŵjt
ℓnAf0;1g 8 jA J; 8nAL; 8ℓ¼ 0;…;n; 8 tAT ð12Þ

�wjt
n Af0;1g 8 jA J 8nAL; 8 tAT ð13Þ

zjtℓpAZþ
0 8 jA J; 8ℓAL; 8pAP; 8 tAT : ð14Þ

The objective function (1) minimizes the total costs for chan-
ging the capacity levels and allocating the demand. Note that the
relocation costs cRn are equally split on variables ŵ and �w in order
to better use both variables within the Lagrangian relaxation.
Constraints (2) are the demand constraints for the customers.
Constraints (3) and (4) are the round-up capacity constraints at the
facilities that first round up the total demand (specified in number
of blocks) and then use the rounded number of blocks to deter-
mine the total capacity necessary at the facility. Constraints
(5) and (6) are the flow conservation constraints that link the
capacity change variables in consecutive time periods. These
constraints also allow the use of the relocation variables ŵjt

ℓn and
�wjt
n to remove flow from one location and add it to another loca-

tion, respectively. Constraints (7) are the flow initialization con-
straints for the locations that already possess facilities with n̂j

existing and open capacity levels, specifying that exactly one
capacity level is chosen at the beginning of the planning horizon.
Constraints (8) guarantee that at most one capacity change vari-
able is selected at each time period and location. Finally, con-
straints (9) are the relocation linking constraints that match the
outgoing and incoming relocations of facilities of the same size.
The flow conservation constraints (5)–(7) represent a network
flow structure, which is illustrated in Fig. 1 for a small example
with four time periods and two capacity levels. Each node repre-
sents the number of open and existing capacity (open capacity
level/existing capacity level). The binary capacity change variables
are represented by arcs, which allow for the construction of new
capacity, as well as the closing and reopening of existing capacity.
Note that, after the construction of new capacity levels, open
capacity levels may be temporarily closed and temporarily closed
capacity may be reopened. The binary capacity change variables
may therefore represent complex combinations of construction,
temporary closing and reopening.
0/0

1

capacity
levels

2t 4t3tperiods t

0/0

0/1

1/1

0/2

1/2

2/2

0/0

0/1

1/1

0/2

1/2

2/2

0/0

0/1

1/1

0/2

1/2

2/2

0/0

0/1

1/1

0/2

1/2

2/2

Fig. 1. Network flow structure to manage partial facility closing and reopening.
Each node indicates the level of open and existing capacity.
Valid inequalities: We propose the following valid inequalities
for our model:

xijtℓpr
X
ℓ1 A L

X
n1 A L

X
n2 A L

y jt
ℓ1ℓn1n2

8 iA I; 8 jA J; 8ℓAL; 8pAP; 8 tAT

ð15Þ
X
jA J

X
ℓ1 AL

X
ℓ2 A L

X
n1 AL

X
n2 A L

u j
ℓ2
y jt
ℓ1ℓ2n1n2 Z

X
iA I

⌈
X
pAP

ditp⌉ 8 tAT : ð16Þ

The Strong Inequalities (SI) (15), typically used in facility location
and network design problems [32,13], are known to provide a
tight upper bound for the demand assignment variables. The valid
inequalities (16) are a strengthened variant of the Aggregated
Demand Constraints (ADC), where the right-hand side is replaced
by

P
iA I

P
pAPd

it
p . Although the ADCs are redundant for the LP

relaxation, the strengthened variant may tighten the formulation.
Furthermore, adding them to the model enables MIP solvers to
generate cover cuts that further strengthen the formulation.

3.1. Problem variants

In this section, we present variants of the problem, which are
introduced to assess the impact of the particular features of the
DFLP_RPC, i.e., the relocation of facilities and the RUC constraints.
The latter are a particular characteristic of the industrial applica-
tion considered here. The majority of facility location models in
the literature uses classical capacity constraints such as the fol-
lowing:X
iA I

X
pAP

ditp x
ijt
ℓpr

X
ℓ1 AL

X
n1 A L

X
n2 A L

u j
ℓy

jt
ℓ1ℓn1n2

8 jA J; 8ℓAL; 8 tAT :

ð17Þ
Note that, when using the classical capacity constraints (17),

the strengthened ADCs (16) are no longer valid. Instead, we use
the classical ADCs, defined in a similar manner, but without the
ceiling operator on the right-hand side of (16).

Based on the classical capacity constraints (17), we define two
simplified variants of the problem: the DFLP_RPC allows for relo-
cation, while the DFLP_PC does not. The GMC based formulation
for the DFLP_RPC, referred to as the RPC-GMC formulation, is
defined by objective function (1) and constraints (2), (5)–(13) and
(17). The GMC based formulation for the DFLP_RPC is referred to as
the PC-GMC formulation and is defined by objective function (1)
and constraints (2), (5)–(8), (10)–(13) and (17), but without the
relocation variables ŵjt

ℓn and �wjt
n and the RUC integer variables zjtℓp.

We refer to the flow formulation proposed by Jena et al. [17] as the
RPCr-2i formulation. Based on this formulation, we also define
formulations for the DFLP_PC and the DFLP_RPC with classical
capacity constraints. We denote the corresponding formulations as
the PC-2i and RPC-2i, respectively.
4. Lagrangian heuristics

When applying Lagrangian relaxation to capacitated facility
location problems, it is common to relax either the capacity con-
straints [33,3] or the demand constraints [29,4,38]. Jena et al. [19]
applied the latter Lagrangian relaxation to the GMC formulation.
By relaxing the demand constraints, the Lagrangian subproblem
decomposes into independent subproblems, one for each candi-
date facility location. These independent subproblems can then be
efficiently solved by dynamic programming.

When the relocation of facilities is allowed, as it is the case for
our problem, the relocation constraints (9) are an additional link
between the candidate facility locations. Therefore, the relaxation
of the demand constraints is not sufficient to decompose the
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Lagrangian subproblem by location. There are two possibilities to
overcome this issue. One can relax both the demand constraints
(2) and the relocation constraints (9) in order to obtain a sub-
problem that can be decomposed by location. Alternatively, one
can relax only the demand constraints (2). The remaining
Lagrangian subproblem then still includes the relocation linking
constraints (9) and, therefore, cannot be decomposed by location.
Instead, the subproblem may be transformed into a pure integer
program and be solved by a generic MIP solver. In our computa-
tional experiments, the latter approach has not been competitive
with the former one, given that the MIP solver may still take
considerable time to solve the resulting integer program. We
therefore report on the first approach, relaxing both the demand
constraints (2) and the relocation linking constraints (9).

Let α be the vector of Lagrange multipliers associated to the
relaxed demand constraints and β the one associated to the
relaxed relocation linking constraints. Let ~cijtℓp ¼ gijtℓpd

it
p �αipt denote

the modified variable coefficients for the x variables. The Lagran-
gian subproblem, including the Strong Inequalities, can be stated
as follows:

L ðα;βÞ ¼min
X
jA J

X
ℓ1 AL

X
ℓ2 A L

X
n1 AL

X
n2 A L

X
tAT

f jt
ℓ1ℓ2n1n2

y jt
ℓ1ℓ2n1n2

þ
X
jA J

X
ℓA L

X
nA L

X
tAT

cTCℓ þcRn
2
�βnt

� �
ŵjt

ℓnþ
X
jA J

X
nA L

X
tAT

�
cRn
2

þβnt

�
�wjt
n þ

X
iA I

X
jA J

X
ℓAL

X
pAP

X
tAT

~cijtℓpx
ijt
ℓpþ

X
iA I

X
pAP

X
tAT

αipt

s:t: ð3Þ–ð8Þ; ð10Þ–ð15Þ:

4.1. Solution of the Lagrangian subproblem

We separate the Lagrangian subproblem into j J j independent
subproblems, one for each potential facility location for a fixed set
of Lagrange multipliers α and β. The Lagrangian subproblem is
then defined as Lðα;βÞ ¼P

jA JLjðα;βÞþ
P

iA I
P

pAP
P

tATαipt , where
Ljðα;βÞ corresponds to the problem of finding the optimal opening
schedule for the capacities of facility j with modified demand
allocation costs ~cijtℓp. To solve this problem, we extend the dynamic

programming algorithm presented by [19]. Let Oα;β
j ðℓ;n; tÞ denote

the value of the optimal opening schedule for facility j from time
period 1 to t, including the costs to satisfy the customer demand
during these time periods and assuming that a facility of size n
(i.e., a facility with n existing capacity levels), open at capacity
level ℓ is available at the end of time period t. To compute these
values, we need to evaluate the following four combinations of
incoming and outgoing relocations:

1. No incoming relocation, no outgoing relocation. The cheapest
capacity level is chosen, including the costs to satisfy demand
until period t�1 and the costs for the capacity transition:

Ĉ
j
1ðℓ;n; tÞ ¼ min

0rn1 rn;0rℓ1 rn1

ff jtℓ1ℓn1nþOα;β
j ðℓ1;n1; t�1Þg:

2. Incoming relocation, no outgoing relocation. A facility with n1
existing capacity levels has been relocated to location j and
possibly expanded by additional capacity, resulting in a final
level of existing capacity n. Furthermore, some unused capacity
may have been closed, resulting in a final level of open capacity
ℓ:

Ĉ
j
RelocINðℓ;n; tÞ ¼ min

1rn1 rn

cRn1
2

þcTOðnREÞ þcTCðnCLÞ þβn1tþcCjðn�n1Þ

( )
;

where nRE¼max 0;ℓ�nþn1f g and nCL¼max 0;n�n1�ℓf g.

Ĉ
j
2ðℓ;n; tÞ ¼ Ĉ

j
RelocINðℓ;n; tÞþcMℓ þOα;β

j ð0;0; t�1Þ:

3. No incoming relocation, outgoing relocation. A facility has been
relocated to another location and a facility of size 〈ℓ;n〉 (i.e.,
ℓ open and n existing capacity levels) has been constructed
afterwards:

Ĉ
j
RelocOUT ¼ min

1rn1 rq;0rℓ1 rn1
cTCℓ1

þcRn1

2
�βn1tþOα;β

j ðℓ1;n1; t�1Þ
( )

Ĉ
j
3ðℓ;n; tÞ ¼ Ĉ

j
RelocOUT þ f jt0ℓ0n:

4. Incoming relocation, outgoing relocation. A facility has been
relocated to another location, while a facility has been relocated
to the current location, eventually followed by a capacity
expansion, resulting in a final capacity level n:

Ĉ
j
4ðℓ;n; tÞ ¼ Ĉ

j
RelocINðℓ;n; tÞþ Ĉ

j
RelocOUT þc M

ℓ :

Based on these four cases, the optimal value for Oα;β
j ðℓ;n; tÞwith

tZ1 is computed as

Oα;β
j ðℓ;n; tÞ ¼ L̂

α
j ðℓ; tÞþmin Ĉ

j
1ðℓ;n; tÞ; Ĉ

j
2ðℓ; n; tÞ; Ĉ

j
3ðℓ;n; tÞ; Ĉ

j
4ðℓ; n; tÞ

� �
;

ð18Þ
where L̂

α
j ðℓ; tÞ is the cost of the optimal demand allocation at

facility j with ℓ open capacity levels at period t, which is computed
as shown below. To initialize the recursive function at t¼0, we
differentiate two cases. If j=2 J0, we set Oα;β

j ðℓ;n;0Þ to 0 if ℓ¼ 0 and
n¼0, and to þ1 for all other values of ℓ and n. If jA J0, we set
Oα;β
j ðℓ;n;0Þ to 0 if ℓ¼ 0 and n¼ n̂j, and to þ1 for all other values

of ℓ and n. Note that, for the DFLP_PC, the recursive functions
above are significantly simpler, as they ignore the relocation
decisions.

The subproblem for location j is solved by selecting the mini-
mum among all possible facility sizes:

Ljðα;βÞ ¼ min
0rℓrq;ℓrnrq

Oα;β
j ðℓ;n; t Þ

n o
:

Note that, using the RUC constraints, the Lagrangian sub-
problem does not have the integrality property, since its linear
relaxation can yield fractional values for the integer variables z.
The lower bound provided by the Lagrangian subproblem may
thus be better than the bound provided by the LP relaxation of the
original problem.

Computation of the optimal demand allocation: When using
common capacity constraints, as used in the Capacitated Facility
Location Problem, the optimal demand allocation L̂

α
j ðℓ; tÞ, taking

into account the adjusted demand allocation costs ~cijtℓp for a given
α, j, ℓ and t, can be obtained by solving a continuous knapsack
problem [29]. However, when using the RUC constraints, finding
the optimal demand allocation is identical to solve the following
MIP:

L̂
α
j ðℓ; tÞ ¼min

X
iA I

X
pAP

~cijtℓpx
ijt
ℓp

s:t:
X
iA I

ditp x
ijt
ℓprspz

jt
ℓp 8pAP

X
pAP

spz
jt
ℓpruj

ℓ

xijtℓpr1 8 iA I; 8pAP
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xijtℓpARþ
0 8 iA I; 8pAP

zjtℓpAZþ
0 8pAP:

This problem contains two embedded knapsack problems. The
overall knapsack problem consists in selecting, for each p, an
integer value for zjtℓp such that the total capacity is respected and
the costs are minimized. The cost for each of these integer values
depends on the choice of x and is computed by a continuous
knapsack that selects x variables such that the total costs are
minimized. The steps to solve this problem are therefore as
follows:

1. First, all feasible integer values for zjtℓp are identified. For each p,

the feasible integer values that zjtℓp may take are given by set

Ωp ¼ 0;1;2;…; uj
ℓ=sp

j kn o
.

2. The costs for each of the integer values of zjtℓp are computed by
solving a continuous knapsack problem for each pAP, by rear-
ranging the demand nodes ditp in increasing order of their ratio
of adjusted transportation costs and demand quantity, i.e.,
~cijtℓp=d

it
p , and by serving demands until either the entire capacity,

given by the value of spz
jt
ℓp, is filled or a demand node with a

positive adjusted transportation cost is met.
3. A Multiple-Choice Knapsack Problem [24] is solved by using

dynamic programming, in which each integer value for a zjtℓp
variable represents an object with a cost coefficient given by the
solution of the previously solved continuous knapsack. The
weight of object zjtℓp is given by spz

jt
ℓp and the total knapsack

capacity is given by uj
ℓ. Exactly one object for each pAP is

selected.

Note that solving the series of continuous knapsacks for a given
p in step 2 can be performed efficiently, as the optimal solution for
the continuous knapsack of a capacity z0 is necessarily part of an
optimal solution for any capacity z″ with z″4z0.

Classical capacity constraints: When applying Lagrangian
relaxation to the simplified problem variants with classical capa-
city constraints, the optimal demand allocation in the subproblem
becomes significantly easier to compute. Instead of solving a
multiple-choice integer knapsack problem when RUC constraints
are used, classical capacity constraints involve only the solution of
simple continuous knapsack problems. This reduces the compu-
tational complexity of solving the Lagrangian subproblem.

4.2. Solution of the Lagrangian dual

The Lagrangian dual problem is maximized to obtain the
optimal Lagrange multipliers:

max
α;β

Lðα;βÞ:

The Lagrangian function Lðα;βÞ is non-differentiable. However,
a subgradient direction can easily be computed. The subgradient
direction is composed of the two vectors γipt and μnt, which
represent the subgradients for the relaxed demand and relocation
linking constraints, respectively. At the k-th iteration, they are
computed as the derivative of the relaxed constraints in α and β,
respectively, with variables x, ŵ and �w fixed to the values found in
the Lagrangian subproblem:

γkipt ¼ 1�
X
jA J

X
ℓAL

xijtℓp 8 iA I; 8pAP; 8 tAT

μk
nt ¼

X
jA J

�wjt
n �

X
jA J

X
ℓAL

ŵjt
ℓn 8nAL⧹f0g; 8 tAT :
We chose to use a bundle method to solve the Lagrangian dual.
Bundle methods are known to possess stronger convergence
properties than the classical subgradient method (e.g., [5]). We use
an implementation of the aggregated bundle method based on
Frangioni [11] that uses a subset of the tuples 〈Lðαs;βsÞ; γs〉 where
sAB is an identifier for the elements within B, which is referred to
as the bundle of subgradients γs, and αs and βs are the corre-
sponding multipliers. From the primal view point, the following
quadratic problem has to be solved at each iteration [12]:

min
θs

1
2

X
sAB

γsθs 2þ1
R
EBθ; s:t:

X
sAB

θs ¼ 1; θZ0

�����
)
;

�����
(

where R is the so-called trust region parameter for the tentative
ascent direction, and Es ¼ Lðα;βÞþγ ðα̂ ; β̂Þ�ðα;βÞ

	 

�Lðα̂ ; β̂Þ is the

linearization error from the current point ðα̂ ; β̂Þ, with ðα;βÞ
denoting the concatenation of vectors α and β. The solution values
for θs, given for each bundle member, hold valuable information
and can be used to construct feasible integer solutions (see Section
4.4). The tentative ascent direction is then computed by the con-
vex combination of the subgradients, using the multipliers θs.
Alternatively, the dual problem can be solved to compute the
ascent direction, or directly the new point. Frangioni and Gallo
[12] elaborate on this relationship in detail.

4.3. Generation of upper bounds

Feasible solutions are generated based on the current Lagran-
gian solution. The costs of these solutions serve as upper bounds
for the optimal value and impact the convergence of the bundle
methods. We extend the approach followed by Jena et al. [19] by
also considering partial closing and reopening of facilities, relo-
cation of facilities and the RUC constraints. The Lagrangian solu-
tion provides a facility opening schedule for the entire planning
horizon, defined by a capacity level pair (ℓ0

jt=n
0
jt) for each j and t, as

well as the corresponding demand allocation. As the demand
constraints (2) have been relaxed, the set of demands ditp can be
separated into three subsets Σ1, Σ2 and Σ3, which denote the
demands defined by triplets 〈i; p; t〉 that are exactly met, over-
served and under-served, respectively.

To obtain an integer feasible solution, we perform the following
steps:

1. Identify feasible relocation pairs: If the problem allows for the
relocation of facilities, feasible pairs of relocation decisions are
identified by matching the outgoing relocations ŵjt

ℓn and
incoming relocations �wjt

n from the Lagrangian solution. For each
pair of facility size n (i.e., n existing capacity levels) and time
period t, we choose the maximum number of facility matches j0

and j″ (with j0a j″) among the ŵj0t
ℓn and �wj″t

n decisions made in
the Lagrangian solution. The procedure to find these pairs
considers facilities without a specific order and excludes infea-
sible configurations, i.e., no outgoing relocation of a facility is
smaller than a previously incoming relocation and subsequent
incoming relocations at the same location are separated by
outgoing relocation. For locations for which no relocation pairs
have been selected, we generate the optimal opening schedule
without relocations.

2. Reduce demand allocation: For each 〈i; p; t〉AΣ2, all facility/size
pairs ðj; ðℓ0

jtÞÞ are sorted in decreasing order of their allocation
costs gijtℓp. By following the sorted list, the allocated flow is
removed until the total allocated demand for 〈i; p; t〉 equals 1, i.e.,
Σ2 is empty and its previous elements are now in Σ1.

3. Increase capacities: If Σ3a∅ and the total remaining capacity is
smaller than the total remaining demand, capacity is increased
sequentially at each time period according to the following
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steps until the total demand can be met. Facilities are con-
sidered without a specific order. We consider two simple pos-
sibilities to increase capacity: if ℓ0

jton0
jt , we incrementally

increase ℓ0
jt until the missing capacity is covered or ℓ0

jt ¼ n0
jt; if

no facility exists, we incrementally increase both ℓ0
jt and n0

jt until
the missing capacity is covered or the maximum capacity level
for this facility is reached. For any time period t04t, the existing
capacity level n0

jt0 is increased to the new level n0
jt if n

0
jt0 on0

jt .
4. Increase the demand allocation: For each 〈i; p; t〉AΣ3, all facility/

size pairs ðj; ðℓ0
jtÞÞ with remaining capacity are sorted in

increasing order of their allocation costs gijtℓp. Demand is allo-
cated to these pairs until the total allocated demand for 〈i; p; t〉
equals 1. Note that, due to the rounding in the capacity con-
straints, certain demand may be allocated to a facility without
consuming additional capacity, if the facility has a commodity p
block that is not yet completely filled. Furthermore, allocating a
new commodity p block is subject to capacity availability at the
facility for the entire block.

5. Reduce unused capacities of open facilities: For each facility, a
dynamic programming algorithm, similar to the one used to
solve the Lagrangian subproblem, computes the optimal open-
ing schedule that guarantees sufficient capacity to satisfy the
demand allocated to that facility. The algorithm takes into
account the total lot size for each commodity reserved at the
facility, not only the allocated customer demands.

Even though the resulting solution is integer feasible, its
demand allocation may still be improved. Therefore, a final step
consists in computing the optimal demand allocation for the cur-
rent opening schedule using the CPLEX network algorithm.

4.4. Restricted MIP model

To improve the final solution quality, we may use a restricted
MIP based on the convexified solutions provided by the bundle
method (see Section 4.2). The restricted MIP model for the
DFLP_RPC needs to decide for the level of open and existing
capacity levels for each location and time period. We therefore
define the restricted MIP in terms of capacity level pairs ðℓ;nÞ.

As explained in Section 4.2, the bundle method provides a
multiplier θs for each Lagrangian solution s such that

P
sθ

s ¼ 1.
The value θs can be seen as the likelihood that solution s provides a
good opening schedule. We may therefore derive such likelihoods
for each of the decisions involved in s. Let yPjℓnt be the likelihood
that capacity level ðℓ;nÞ at j and t is a good opening decision,
defined as yPjℓnt ¼

P
sθ

sysjℓnt , where ysjℓnt is 1 if solution s selects
capacity level pair ðℓ;nÞ for location j at period t. Furthermore, let
LRjt be the set of ðℓ;nÞ pairs for location j and period t available in
the restricted MIP. The restricted MIP is then defined as follows:

� Selection of capacity levels: If the decision for location j and
period t is not fixed, LRjt is composed by the nS capacity level
pairs ðℓ;nÞ that have the highest yPjℓnt values, with yPjℓnt40:001.

� Defining the set of capacity transitions: Decision variables
yjtℓ1ℓ2n1n2

are defined for all combinations between ðℓ1;n1Þ and
ðℓ2;n2Þ, with ðℓ1;n1ÞALRjt and ðℓ2;n2ÞALRjðtþ1Þ, if available in the
original RPCr-GMC formulation.

Relocation decisions are added to the restricted MIP by com-
puting ŵP

jℓnt and �wP
jnt , representing the likelihoods that an out-

going relocation ŵjt
ℓn and an incoming relocation �wjt

n , respectively,
are good decisions. We set ŵP

jℓnt ¼
P

sθ
sŵs

jℓnt , where ŵs
jℓnt is 1 if

solution s relocates a facility with n existing and ℓ open capacity
levels from location j to another location at period t. In the same
way, we set �wP

jnt ¼
P

sθ
s �ws

jnt , where �ws
jnt is 1 if solution s relocates
a facility with n existing and ℓ open capacity levels from location j
to another location at period t. All relocation variables with their
corresponding ŵP

jℓnt and �wP
jnt greater than or equal to 0.001 are

added to the restricted model. To ensure their feasibility with
respect to the flow conservation constraints, certain capacity levels
are added to the sets of available capacity levels LR. To be precise,
when adding a relocation decision �wjt

n to the restricted MIP,
capacity level pair ð0;nÞ is added to LRjðt�1Þ and capacity level pairs
ð0;nÞ and ðn;nÞ are added to LRjt to ensure that the flow conserva-
tion constraints contain the capacity transition variables yjtℓ1ℓ2n1n2

that either maintain the facility closed or reopen it at its maximum
capacity level n.
5. Computational experiments

In this section, the performance of the Lagrangian heuristic and
that of the MIP solver CPLEX for the different problem variants and
formulations are evaluated and compared by means of computa-
tional experiments. Results are therefore reported for the
DFLP_RPC with RUC constraints and for the two simplified pro-
blem variants DFLP_PC and DFLP_RPC with classical capacity
constraints (17). All CPLEX models include the strong inequalities
(15), as well as the ADCs or strengthened ADCs (16) for the pro-
blem variants without or with RUC constraints, respectively.

First, we explain how test instances are generated. Then, the
solution of the LP relaxation, as well as the integrality gaps of the
different problem variants and formulations are analyzed to assess
the impact of the additional features, i.e., facility relocation and
RUC constraints. CPLEX optimization results are then summarized
for each of the problem variants and their formulations, and the 2i
and GMC formulations are compared in detail for the DFLP_RPC
with RUC constraints. Finally, computational results are presented
to compare the performance of the Lagrangian heuristics and that
of CPLEX for the DFLP_RPC with RUC constraints.

All mathematical models and the Lagrangian based heuristics
have been implemented in C/Cþþ using the IBM CPLEX 12.6.0
Callable Library. The code has been compiled and executed on
openSUSE 11.3. Each problem instance has been run on a single
Intel Xeon X5650 processor (2.67 GHz), limited to 24 GB of RAM.

5.1. Test instances

Due to the lack of openly available instance sets that include
the input data required by the DFLP_PC and DFLP_RPC with clas-
sical and with RUC constraints, we generated instances by
extending the scheme described in Jena et al. [19]. In the following,
we summarize the general properties of the instances and focus
on the information that extend the previous instances. New
information concerns the partial facility closing, facility relocation
and the RUC constraints. For further details, we refer to the freely
accessible online appendix of Jena et al. [19].

Instances have been generated with different numbers of can-
didate facility locations j J j and customers j Ij , combining all pairs
of j J j A 50;100;150;200;250f g and j I j A j J j ;4 � j J j� �

. The highest
capacity level at any facility, denoted by q, has been selected such
that qAf3;5;10g. Three different networks have been randomly
generated on squares of the following sizes: 300 km, 380 km and
450 km. We consider two different demand scenarios. In both
scenarios, the demand for each of the customers is randomly
generated and randomly distributed over time. The two scenarios
differ in their total demand summed over all customers in each
time period. In the first scenario, the total demand is similar in
each time period. The second scenario assumes that the total



Table 2
Comparison of average integrality gaps (in %) for the three problem variants for
instances where the optimal integer solution is known and the LP relaxation of all
formulations has been solved.

q Instance size # inst. DFLP_PC DFLP_RPC DFLP_RPC w/RUC

2i GMC 2i GMC 2i GMC

3 50/50 13 3.34 0.57 4.96 0.59 4.97 0.60
50/200 18 1.06 0.04 1.52 0.05 1.52 0.05
100/100 17 2.50 0.10 3.93 0.09 3.93 0.09
100/400 18 0.98 0.01 1.45 0.01 1.45 0.01
150/150 17 2.08 0.07 3.46 0.05 3.46 0.05
150/600 14 0.95 0.01 1.46 0.01 1.46 0.01
200/200 17 1.89 0.05 3.16 0.03 3.16 0.03
200/800 8 0.84 0.02 1.39 0.02 1.40 0.02
250/250 17 1.69 0.02 2.97 0.02 2.97 0.02
250/1000 4 0.81 0.02 1.35 0.03 1.35 0.03
Avg All 143 1.69 0.09 2.69 0.09 2.69 0.09

5 50/50 4 4.98 0.95 6.22 0.81 6.22 0.81
50/200 11 1.80 0.11 2.29 0.10 2.30 0.11
100/100 9 3.47 0.18 4.86 0.22 4.86 0.22
100/400 11 1.58 0.01 2.07 0.01 2.07 0.01
150/150 6 3.07 0.10 4.55 0.07 4.55 0.07
150/600 4 1.49 0.01 2.11 0.01 2.11 0.01
200/200 7 2.67 0.07 3.95 0.02 3.95 0.02
200/800 1 1.64 0.01 2.34 0.01 2.34 0.01
250/250 5 2.24 0.02 3.60 0.03 3.60 0.02
250/1000 2 1.47 0.02 2.16 0.03 2.16 0.03
Avg All 60 2.45 0.13 3.41 0.12 3.41 0.12

10 100/400 1 3.01 0.03 3.10 0.00 3.14 0.04
Avg All 1 3.01 0.03 3.10 0.00 3.14 0.04

All Avg All 204 1.92 0.10 2.90 0.10 2.91 0.10
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demand follows strong variations along time and therefore varies
at each time period.

The number of commodities jP j has been selected such that
jP j A 1;3;5f g. The demands for the second to fifth commodities are
based on the demand for the first commodity. To be precise,
the demand ditp for pZ2 is computed as ditp ¼ dit1 � rp�
avgDemp=avgDem1, where avgDem1 ¼ 10, avgDem2 ¼ 6, avgDem3

¼ 9, avgDem4 ¼ 5, avgDem5 ¼ 8, and rp �Nð1:0;0:22Þ is a normally
distributed random variable with mean of 1.0 and standard
deviation of 0.2, truncated at 0 such that rpZ0. When RUC con-
straints are used, the demands need to be scaled, since the RUC
capacity constraints operate in units of lot sizes sp. Demands ditp are
therefore divided by the corresponding lot size sp, which have
been set to s1 ¼ 6, s2 ¼ 3, s3 ¼ 5, s4 ¼ 2 and s5 ¼ 7. Fixed costs are
given by the construction of facilities or additional capacity and
the change of their capacity levels (i.e., closing and reopening).
Variable costs are composed of the costs to produce and transport
the commodities. All costs include economies of scale with respect
to the capacity involved in the corresponding operations. Trans-
portation costs have been computed based on the Euclidean dis-
tance between the points, including a small modification that
results in a slight clustering effect of the customers close to a
facility. The costs to relocate a facility of 1;…;10 capacity levels
from one location to another are set to 12,823.70, 19,431.90,
24,077.00, 30,247.00, 42,639.10, 48,854.50, 50,579.90, 56,314.10,
67,804.10 and 73,558.50, respectively. The combination of the
different properties listed above results in a total of 5� 2� 3�
3� 2� 3¼ 540 instances. All instances contain ten time periods,
which is found to be sufficient to demonstrate capacity changes
along time. Note that we assume that the problem instances do
not contain initially existing facilities.

5.2. LP relaxation and integrality gaps

We now address the solution of the LP relaxations for the three
problem variants and their formulations, and assess their strength
by means of their integrality gaps. The comparison is performed
on two scopes. Table 1 summarizes, separately for each problem
variant and formulation, the results of the LP relaxation solution.
The results take into account only those instances for which the LP
relaxation has been solved within 12 h of computing time (“#
inst”) and include the average integrality gaps (as estimated by the
best known upper bounds) and average computing times. Then,
Table 2 provides a direct comparison of the integrality gaps by
Table 1
Solution of LP relaxation and average integrality gaps (in %) separately for all
problem variants and formulations.

q 2i formulation GMC based formulation

# inst. Avg % integr. gap Time (s) # inst. Avg % integr. gap Time (s)

DFLP_PC
3 180 1.74 335.0 177 0.17 261.1
5 174 3.09 661.8 162 0.44 734.5
10 153 6.86 3175.9 75 1.55 5407.3
All 507 3.75 1304.5 414 0.52 1378.6

DFLP_RPC
3 180 2.65 891.5 176 0.15 2120.2
5 174 3.96 1997.0 156 0.49 3265.9
10 162 7.47 2785.3 70 1.94 9261.3
All 516 4.60 1858.9 402 0.60 3808.2

DFLP_RPC with RUC constraints
3 178 2.71 2046.9 161 0.19 3775.4
5 171 4.08 2818.3 150 0.60 6060.4
10 162 8.27 3308.6 69 2.35 11,546.6
All 511 4.93 2705.0 380 0.74 6088.5
focusing on problem instances that have been solved by all for-
mulations. The reported values are computed over the instances of
the same (#facilities/#customers) pairs for which all six formula-
tions have solved the LP relaxation within 12 h of computing time
and for which the optimal integer solution is known within 0.1%.

Comparison between problem variants: The separate results in
Table 1 and the results for the same set of instances in Table 2
indicate that both the computing times for solving the LP relaxa-
tion and the integrality gaps tend to increase as they become more
complex (for the 2i formulation as relocation is added and for both
formulations as RUC constraints are added). As a consequence, one
may expect that solving the MIP models also becomes more dif-
ficult as the problems’ complexity increases.

Comparison between 2i and GMC formulations: It can be
observed that the LP relaxation of the 2i formulation is generally
easier to solve than for the GMC formulation, but the latter seems
to provide substantially better bounds. When comparing the
integrality gaps between the 2i and GMC formulation for the same
problem variant in Table 2, the results demonstrate the same trend
for all three problem variants: the GMC based formulations pro-
vide significantly lower integrality gaps, on average 19–30 times
lower than those provided by the 2i formulations.

5.3. CPLEX optimization

As illustrated above, the LP relaxation of the 2i formulations is
solved much faster than that of the GMC formulations. However,
the latter provides a substantially better bound. Furthermore, the
difficulty of solving the LP relaxation increases, as the problem
variant becomes more complex. We now compare the different
problem variants and formulations in terms of their ability to find
the optimal integer solutions. As before, the comparison is per-
formed on two scopes. First, Table 3 presents the results separately
for each of the problem variants and formulations on the total set
of 540 instances. The results indicate the number of instances for



Table 3
CPLEX results separately for all problem variants and formulations.

q 2i formulation GMC based formulation

# inst. Avg gap% Max
gap%

Time (s) # inst. Avg gap% Max
gap%

Time (s)

DFLP_PC
3 159 0.41 36.02 1788.1 159 0.02 1.09 694.3
5 126 0.41 6.61 3626.5 107 0.19 2.67 2426.6
10 38 9.41 91.09 6321.6 25 1.52 3.78 6195.4
All 323 1.47 91.09 3038.6 291 0.21 3.78 1803.9

DFLP_RPC
3 133 0.50 4.98 1633.0 155 0.33 5.26 802.1
5 45 0.86 3.91 3163.0 109 0.77 13.59 1891.5
10 1 1.00 1.00 865.0 21 1.91 4.12 5654.8
All 179 0.59 4.98 2013.3 285 0.61 13.59 1576.3

DFLP_RPC with RUC constraints
3 101 0.23 4.86 2850.1 154 0.10 3.71 2036.3
5 29 0.27 3.64 3172.5 86 0.86 13.59 3673.5
10 1 0.28 0.28 7201.0 11 1.59 3.33 7200.5
All 131 0.24 4.86 2954.7 251 0.43 13.59 2823.6

Table 4
CPLEX results comparing the two formulations for the DFLP_RPC with RUC con-
straints, considering instances where both formulations found feasible solutions.

q Instance size # inst. RPCr-2i RPCr-GMC

Avg
gap
%

Max
gap%

Time (s) Avg gap% Max
gap%

Time (s)

3 50/50 16 0.20 1.48 2561.5 0.17 1.50 2393.1
50/200 18 0.00 0.01 1398.4 0.00 0.01 733.3
100/100 16 0.08 1.22 1795.3 0.02 0.21 854.9
100/400 12 0.16 1.92 2968.2 0.00 0.01 529.3
150/150 13 0.01 0.02 2324.5 0.00 0.01 459.8
150/600 6 1.65 4.75 7200.5 0.01 0.02 2682.5
200/200 13 0.04 0.20 3547.5 0.22 2.79 1721.2
250/250 7 0.33 1.29 5403.0 0.00 0.01 1443.4
Avg All 101 0.19 4.75 2850.1 0.06 2.79 1248.2

5 50/50 6 0.52 2.32 3819.7 0.19 0.61 2607.5
50/200 8 0.00 0.01 1762.8 0.00 0.01 347.1
100/100 5 0.01 0.01 1972.6 0.01 0.01 369.6
100/400 3 0.12 0.35 3744.3 0.00 0.00 745.0
150/150 4 0.06 0.22 4819.3 0.04 0.15 2395.5
200/200 2 0.00 0.00 3705.0 0.00 0.01 1245.5
Avg All 28 0.13 2.32 3028.7 0.05 0.61 1234.9

10 50/200 1 0.28 0.28 7201.0 0.34 0.34 7200.0
Avg All 1 0.28 0.28 7201.0 0.34 0.34 7200.0

All Avg All 130 0.18 4.75 2922.0 0.06 2.79 1291.1
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which CPLEX found feasible solutions (“# inst”) within the time
limit of two hours, the average and maximum optimality gaps
proven by CPLEX, and the average computing times. Then, Table 4
focuses on the results for the DFLP_RPC with RUC constraints,
comparing the two formulations for the instances for which both
formulations found feasible solutions within the given time limit
of two hours.

Comparison between problem variants: As can be observed in
Table 3, the number of instances for which CPLEX found feasible
solutions decreases for both formulations as the problem variant
gets more complex: for the 2i formulation, 323, 179 and 131 fea-
sible solutions are found for the three problem variants, respec-
tively; for the GMC formulation, 291, 285 and 251 feasible solu-
tions are found, respectively. These results confirm the increasing
difficulty of solving the different problem variants as facility
relocation and RUC constraints are added to the problem.
Comparison between 2i and GMC formulations: When comparing
the GMC formulations to the 2i formulations, the results indicate
that the former generally facilitate the solution of the problems.
For the DFLP_RPC without and with RUC constraints, the GMC
based formulations lead to significantly higher numbers of
instances with feasible solutions than the 2i formulations (285 vs.
179 instances for the DFLP_RPC and 251 vs. 131 for the DFLP_RPC
with RUC constraints). Comparing on the same set of instances for
the DFLP_RPC with RUC constraints in Table 4, the GMC formula-
tion clearly outperforms the 2i formulation regarding the average
and maximum deviations from the best known lower bound, as
well as the computing times. A further analysis for the simplified
problem variants has shown similar results. For the DFLP_PC,
CPLEX found feasible solutions for both the PC-2i and the PC-GMC
formulations for 280 instances. The PC-2i formulation reports an
average optimality gap of 1.09%, a maximum gap of 90.83% and an
average solution time of 2768 s, whereas the PC-GMC formulation
results in a lower average gap of 0.16%, a maximum gap of 3.78%
and an average solution time of 1613 s. For the DFLP_RPC, CPLEX
found feasible solutions for both formulations for 179 instances.
The RPC-2i formulation resulted in an average gap of 0.44%, a
maximum gap of 4.83% and an average solution time of 1956 s.
Again, the RPC-GMC formulation reported superior performance
with an average gap of 0.21% and a maximum gap of 1.39% in an
average solution time of only 592 s. Based on these results, it can
be concluded that the GMC based formulations provide a clear
advantage in terms of solution quality and computing time when
compared to the traditional 2i formulations.

5.4. Performance of the Lagrangian heuristic

We now present results for the Lagrangian heuristics and
compare their performance to CPLEX. When using RUC con-
straints, the solution of the Lagrangian subproblem is more diffi-
cult and consumes significantly more computing time. However, it
is likely that the problem variant with RUC constraints selects
similar facility locations in their optimal solutions as the problem
variant without RUC constraints. The Lagrangian heuristics pre-
sented in this section therefore initialize the Lagrange multipliers
by first solving the problem variant without RUC constraints and
then by solving the problem variant with RUC constraints. The
initialization phase without RUC constraints is terminated after a
maximum of 300 iterations of the bundle method or when the
best upper bound lies within 1% of the best known lower bound.
Note that, even though we solve the subproblem for the problem
variant without RUC constraints, we generate upper bounds for
the problem variant with RUC constraints. Furthermore, note that
the lower bounds from the initialization phase are also valid for
the problem variant with RUC constraints. After the initialization
phase, the original problem is solved by the bundle method, lim-
ited to a maximum of 500 iterations (including the iterations
performed in the initialization phase). In a final optimization
phase, we solve the restricted MIP to improve the solution quality.

The following experiments allow for a total of three hours of
computing time. For all experiments, a 0.01% optimality stopping
criterion has been used. Table 5 presents the results for the
Lagrangian heuristic applied to the DFLP_RPC with RUC con-
straints. The results are given for two configurations of the heur-
istic. The first configuration uses only the bundle method, whereas
the second configuration adds the restricted MIP model after-
wards. The restricted MIP has been used with parameter nS¼10.
For the second configuration, the restricted MIP is started after
two hours at the latest. Adding the restricted MIP significantly
improves the average solution quality, while the maximum
optimality gap and average computing time remain similar. The
lines at the bottom of the table provide results separating the



Table 5
Results for the Lagrangian heuristic for all 540 instances for the DFLP_RPC with RUC constraints.

q Instance size Bundle only Bundle þ R-MIP

Avg gap % Max gap% Time (s) # 1% opt Avg gap% Max gap% Time (s) # 1% opt

3 50/50 3.77 11.64 325.4 1 0.31 1.22 4142.9 9
50/200 0.78 1.54 499.1 15 0.53 0.96 268.3 18
100/100 1.75 6.14 858.7 8 0.40 0.87 273.2 18
100/400 0.85 2.82 914.9 16 0.59 0.92 650.8 18
150/150 1.86 5.13 1559.9 8 0.29 0.99 610.8 18
150/600 1.02 2.86 1291.0 14 0.70 0.98 760.5 18
200/200 1.89 6.40 2576.7 10 0.42 0.94 1098.2 18
200/800 1.47 4.70 2479.1 11 0.51 1.00 1707.8 18
250/250 1.54 6.44 2686.9 10 0.40 0.93 1381.2 18
250/1000 1.88 4.67 5942.3 6 0.29 1.00 4081.3 18

5 Avg All 1.68 11.64 1913.4 99 0.44 1.22 1497.5 171

50/50 9.18 20.01 639.5 1 1.70 4.57 6763.3 2
50/200 1.80 4.31 3259.6 5 0.49 1.32 1907.4 16
100/100 6.21 20.14 2382.9 1 0.73 2.26 3825.7 10
100/400 1.16 3.30 2798.1 13 0.50 0.99 1605.0 18
150/150 5.21 9.84 4834.0 1 0.60 1.50 1943.1 15
150/600 1.09 2.98 3419.6 10 0.43 0.95 2339.4 18
200/200 3.99 9.31 6061.1 2 0.45 1.20 2948.4 17
200/800 1.71 4.96 4154.0 9 0.53 0.98 2900.0 18
250/250 3.15 8.80 5849.7 5 0.35 0.98 3313.8 18
250/1000 2.05 4.35 7494.4 5 0.30 0.97 5024.0 18
Avg All 3.56 20.14 4089.3 52 0.60 4.57 3224.8 150

10 50/50 15.93 27.86 1770.1 0 6.38 20.19 7404.5 0
50/200 9.80 18.18 5830.8 0 3.45 18.18 8189.3 2
100/100 17.78 29.99 5134.7 0 4.99 20.86 8427.6 0
100/400 5.85 13.43 7882.2 2 2.24 13.43 6213.4 12
150/150 18.42 29.05 7207.3 0 6.04 29.05 9140.5 1
150/600 5.03 10.94 8013.6 3 2.88 10.94 6707.2 11
200/200 17.15 26.92 8040.9 0 5.16 26.26 9010.6 1
200/800 4.65 11.91 9568.7 0 2.96 11.91 7356.3 12
250/250 15.21 27.29 8357.2 0 6.26 27.29 8666.2 4
250/1000 3.05 5.68 10,893.3 1 0.86 5.68 7598.8 15
Avg All 11.29 29.99 7269.9 6 4.11 29.05 7864.3 58

All jP j ¼ 1 4.08 21.63 1869.0 42 0.56 3.46 1372.5 147
jP j ¼ 3 5.54 27.86 5019.5 60 1.32 17.95 4994.2 126
jP j ¼ 5 6.91 29.99 6384.1 55 3.28 29.05 6247.4 106
Avg All 5.51 29.99 4424.2 157 1.72 29.05 4194.1 379
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instances by number of commodities. As it may be expected, the
problem difficulty increases as the problem contains more com-
modities. The last column for each configuration indicates the
number of instances for which the heuristic proved optimality
within 1%. Given the strong lower bounds provided by the heur-
istic, the heuristic proves optimality within 1% for 379 of the 540
instances.

Table 6 provides a direct comparison between the results of
CPLEX and the Lagrangian heuristic. Column “#ns” indicates the
number of problem instances for which CPLEX did not find any
feasible solution. The MIP solver does not find feasible solutions
for about half of the instances, in particular for those with a high
number of capacity levels, i.e., q¼10. For the instances where
CPLEX finds feasible solutions, the Lagrangian heuristic provides
more reliable results, having a smaller maximum deviation of the
provided solution value from the best known lower bound, while
the computing times are significantly lower. Interestingly, for
those instances, the number of commodities impacts less on the
solution quality. Given that the model size increases with the
number of commodities, the increase in computing time is as
expected. Finally, given the strong lower bounds provided by the
heuristic, the latter is capable to prove optimality within 1% for
almost the same number of instances as CPLEX (218 vs. 234).
6. Conclusions

We have considered a recently introduced multi-period facility
location problem with multiple capacity levels and multiple
commodities. This problem, motivated by an industrial application
in forestry, allows for several ways to adjust capacity along time,
such as the expansion of capacity and the relocation of facilities. As
for many problems motivated by industrial applications, the fea-
tures of the problem go beyond classical variants and significantly
complicate the solution. In particular, the problem extends clas-
sical facility location by considering the partial closing and
reopening of facilities, as well as capacity constraints that consider
rounding on the left-hand side of the constraints.

In this paper, we proposed a new formulation for this problem,
as well as for two simplified variants without relocation and with
classical capacity constraints. For our test instances, the proposed
formulations provide significantly lower integrality gaps than
previous formulations, on average 19–30 times lower. As a con-
sequence, MIP solvers perform much better when using the new
formulation. Next to computational advantages, the proposed
modeling technique also allows for a better representation of the
cost structure of the problem.

Lagrangian relaxation based heuristics have been developed to
find high quality solutions for the problems. While the Lagrangian



Table 6
Comparison of solution quality for CPLEX and the Lagrangian heuristic considering instances for the DFLP_RPC with RUC constraints where CPLEX found feasible solutions.

q Instance size CPLEX Bundle þ R-MIP

# ns Avg gap% Max gap% Time (s) # 1% opt Avg gap% Max gap % Time (s) # 1% opt

3 50/50 0 0.23 1.21 4327.7 16 0.31 1.22 4142.9 9
50/200 0 0.00 0.01 751.2 18 0.53 0.96 268.3 18
100/100 0 0.01 0.18 1325.3 18 0.40 0.87 273.2 18
100/400 0 0.00 0.01 719.8 18 0.59 0.92 650.8 18
150/150 0 0.02 0.26 1665.1 18 0.29 0.99 610.8 18
150/600 1 0.01 0.02 3017.2 17 0.69 0.98 756.5 17
200/200 0 0.12 2.04 2949.2 17 0.42 0.94 1098.2 18
200/800 9 0.40 3.48 6120.1 8 0.22 0.81 1411.7 9
250/250 0 0.10 1.79 2978.1 17 0.40 0.93 1381.2 18
250/1000 15 0.84 2.51 8152.7 2 0.05 0.11 1400.7 3
Avg All 25 0.10 3.48 2553.1 149 0.43 1.22 1170.5 146

5 50/50 3 2.15 8.39 8005.7 9 1.19 3.28 5831.7 2
50/200 0 0.45 3.43 4956.9 16 0.49 1.32 1907.4 16
100/100 4 0.36 1.48 4955.4 12 0.42 1.29 2104.2 10
100/400 7 0.01 0.03 2504.8 11 0.48 0.97 653.5 11
150/150 7 0.92 7.56 6093.3 9 0.34 0.89 812.4 10
150/600 12 0.04 0.19 5291.7 6 0.20 0.77 651.0 6
200/200 10 0.09 0.39 4031.4 8 0.16 0.50 800.8 8
200/800 17 0.01 0.01 4005.0 1 0.84 0.84 1145.0 1
250/250 12 0.04 0.14 5347.5 6 0.18 0.73 557.7 6
Avg All 90 0.63 8.39 5259.5 78 0.50 3.28 1950.8 70

10 50/50 12 1.78 4.07 10,800.2 3 1.85 2.81 611.5 0
50/200 15 0.71 1.51 10,110.0 3 0.60 1.21 264.3 2
100/100 13 2.88 8.82 10,800.4 1 1.92 3.14 2254.6 0
Avg All 166 1.94 8.82 10,652.4 7 1.61 3.14 1123.9 2

All All jP j ¼ 1 62 0.30 8.82 3217.0 109 0.47 3.14 390.6 101
All jP j ¼ 3 100 0.23 6.57 3602.7 76 0.50 2.39 1693.7 70
All jP j ¼ 5 119 0.74 8.39 5744.1 49 0.63 3.28 3169.4 47
Avg All 281 0.38 8.82 3931.3 234 0.52 3.28 1433.1 218
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relaxation could have been based on the existing 2i formul-
ation, the use of the new GMC based formulation has the impor-
tant advantage of providing sharp bounds on the optimal inte-
ger solution value and therefore on the quality of the provided
solutions.

The Lagrangian heuristics consist of two optimization phases.
In the first phase, the Lagrangian dual is solved by a bundle
method, providing lower and upper bounds. Then, a restricted MIP
model is solved to improve the final solution quality. Even though
the relocation of facilities, as well as the particular capacity con-
straints represent an additional obstacle when decomposing the
problem, we demonstrate how to efficiently construct feasible
facility relocations after relaxing the relocation linking constraints
and how to solve the round-up capacity constraints in a combi-
natorial manner.

Computational results show that the proposed heuristics out-
perform state-of-the-art MIP solvers, providing better average and
maximum deviations from the best known lower bounds in sig-
nificantly shorter computing times. While the MIP solver does not
find feasible solutions for about half of the instances, the heuristics
are able to provide high quality solutions for all instances. The
average deviation from the best known lower bounds for all 540
test instances is 1.72% for the original problem considering relo-
cation and round-up capacity constraints.
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